Adobe Analytics

Adobe Analytics: DatafeedのログからフォールアウトレポートをBigQueryで作成する

こんにちは、エクスチュアの権泳東(コン・ヨンドン)です。

今回はAdobe AnalyticsのDatafeedログからBigQueryを使ってフォールアウトレポートを作成する方法についてです。

Adobe AnalyticsのデータをBigQueryにロードする方法は過去にこのブログでも何度か説明しましたので参考にしてください。

Adobe Analytics: データフィードをGoogle Compute EngineのLinuxインスタンスにSFTP転送する
Adobe AnalyticsからDWHレポートをGoogle Cloud Storageにアップロードする方法
Adobe AnalyticsのDatafeedをBigQueryのColumn-based Time-partitioned Tableにロードする

Compute EngineでSFTPサーバーを立てて、そこに放り込んだファイルをBigQueryにロードする手順が一番カンタンで手っ取り早いです。

で、以下はデータセット名「datafeed」、テーブル名「hit_data」にhit_data.tsvのデータをロードしている前提で進めます。

1. トップページ (index)
2. サイト内検索 (search)
3. サービス詳細 (services)
4. 問い合わせフォーム (inquiry)
5. 問い合わせ完了 (complete)

という5つのステップでのフォールアウトを出します。

そして、SQLそのものはここに貼ると長いので、Githubに載せておきます。
https://github.com/youngdongk/exture-aa-datafeed-query/blob/master/aa-fallout.sql

BigQueryで実行すると、結果はこうなります。

step … ステップ番号
pagename … チェックポイント対象のページ名
count … インスタンス
fallout … 起点ページから遷移率
step_fallout … 直前のチェックポイントからの遷移率

という結果のレポートになります。

以下、何をやってるか簡単に説明します。

まずは冒頭のCTE(with句)「base」において、フォールアウトのチェックポイント(ステップ)となるページをを定義します。

2番目のCTE 「aa_fallout」では、hit_dataから必要なデータを抽出します。

・セッションIDは、post_visid_high + post_visid_low + 訪問回数(visit_num)の3つを結合したものを使います。
・その同一セッション内に通過したページ名(post_pagename)と、最初と最後のタイムスタンプ(hit_time_gmt)を抽出してグループ化します。
・クリックのヒットは除外するため、post_page_event = 0 を指定してます。

3番目のCTE 「aa_fallout_v2」と4番目の「aa_fallout_v3」では、通過した各ステップのページのタイムスタンプがセッションの範囲内なのかというのと、ステップの順番通りに進んでいるかのチェックをしてます。

そして最後にレポートとして整形してすることで、フォールアウトレポートが出来上がります。

このデータを、Google Data StudioなどのBIツールに投入してグラフ化するともっと分かりやすくなります。

今回はAdobe AnalyticsのDatafeedログからBigQueryを使ってフォールアウトレポートを作成する方法について説明しました。

弊社では、Adobe認定エキスパート資格とGoogleCloud認定データエンジニア資格を持ったエンジニアが、Adobe Analyticsのデータフィードと、その他のデータソースを統合した分析基盤をGoogle Cloud Platform上に構築するサービスを提供しております。
お問い合わせはこちらからどうぞ。

ブログへの記事リクエストはこちらまで

関連記事

  1. Firebase Analytics

    Firebase Analyticsの新しいBigQueryスキーマを試す

    こんにちは、エクチュアの権泳東(コン・ヨンドン)です。「お名前なん…

  2. GA 360 Suite

    Google Analytics 360 + BigQueryでよく使うSQL例 6選

    こんにちは、エクスチュアの権泳東(コン・ヨンドン)です。今回は…

  3. GA 360 Suite

    GoogleDataStudio:複数のデータソースにフィルターを適用する

    こんにちは。エクスチュアの渡部です。今回はDataStudio(デ…

  4. Adobe Analytics

    Adobe Analytics:計算指標でevents変数を後付けでパーティシペーションにする

    こんにちは。CEOの原田です。なるべくこのブログでは新しめな内容を…

  5. Google Analytics

    Google Analytics StandardのデータをBigQueryで分析するための力技

    こんにちは、エクスチュアの権です。先月「Google Clou…

  6. Adobe Analytics

    Adobe Analytics:セグメントの落とし穴:滞在時間がおかしくなる

    Adobe Analyticsの持つ機能の中でも特に強力で便利な機能の…

最近の記事

  1. Databricks: Delta Lakeを使ってみる
  2. Adobe Analytics:計算指標でevents変数を…
  3. Databricks: Spark DataFramesをJ…
  4. Databricks: Spark RDDで使う主なメソッド…
  5. GCPのBQMLを使ってKaggleコンペに挑んでみた(その…
  1. GA 360 Suite

    GoogleDataStudio:複数のデータソースにフィルターを適用する
  2. Google BigQuery

    Google Apps Scriptを使ってスプレッドシートからBigQuery…
  3. Cloud Dataflow

    Firebase AnalyticsのデータをフラットなCSVに変換する …
  4. Adobe Analytics

    AdobeAnalytics: GTMのdataLayerをAdobeAnaly…
  5. Google BigQuery

    BigQuery BI Engine解説
PAGE TOP