Tableau

Tableauのリレーションシップを理解して過剰結合を防ぐ

リレーションシップとは

Tableau Desktop 2020.2の新機能で、ザックリいうと「これまで1から結合を定義していたものを、Tableauが自動で調整してくれる」という機能です。
ユーザーにとって嬉しいポイントとしては「粒度の異なるデータをくっつけて分析できる」という点で、これにより中間テーブルを定義せずに済み、レコード増加によるパフォーマンスの悪影響を抑えることができます。
リレーションシップ自体は大変便利な機能で、一般的な「結合」の上位互換となるのですが、データ量が膨大になる時には注意しなければなりません。
合言葉は「カーディナリティ(濃度)」です。

カーディナリティ「1対多」「多対多」の使い分け

リレーションシップで「パフォーマンスオプション」を開くと、カーディナリティの項目が現れます。
※デフォルトでは「多対多」で設定されています。

この「多対多」はデータの粒度を細かく扱うことを表しています。
実際にTableau Desktopでの挙動から、カーディナリティが何を指すのか見ていきましょう。
まず、「注文」と「売上目標」という2つのテーブルを[オーダー日]でリレーションを組んでいきます。

オーダー日やカテゴリなどを適当に配置すると、以下のようになります。
各日付ごとの詳細なデータが格納されていることが確認できました。

次に、リレーションを「多対一」にしてみます。

すると、先ほどの表は以下のようになります。

今回は[オーダー日]でリレーションを組んだので、オーダー日の単位でデータが丸められました。
このようにカーディナリティを調整することにより、データの粒度を変更することができるのです。
これはデータ量が多い時にかなりパフォーマンスに“差”が出ます。
また、場合によっては「キーが不十分でデータを過剰に結合してしまう」ということも生じます。
Tableauのリレーションシップは大変便利な機能で、ほとんどのユーザーはこれを気にしなくても良いです(多分
しかし、システムの中核をデザインする立場であれば、このように細部までこだわっていきたいところです。
Tableauや総合研究所に関する質問はお問い合わせからどうぞ。

ピックアップ記事

  1. 最速で理解したい人のためのIT用語集

関連記事

  1. Tableau

    Tableau Tips〜WINDOW関数〜

    はじめにこんにちは!インターンの與那覇(ヨナハ)ですこれから不定期…

  2. Tableau

    【TC19ブログ】エクスチュアの海外カンファレンス参加支援制度

    こんにちは、エクスチュアの渡部です。いよいよ明日の11/12(…

  3. Tableau

    あなたのTableau(タブロー)が重い理由【パフォーマンスの記録】

    はじめにTableauを利用している人のほとんどが経験しているであろ…

  4. Tableau

    Tableau:抽出を含んだワークブックを10.4以下にダウングレードする

    こんにちは、エクスチュアの渡部です。Tableauの小ネタです。…

  5. Tableau

    Tableau Tips〜INDEX関数〜

    はじめに今回紹介するINDEX関数はTableauの関数の中でも非常…

  6. Tableau

    【基本】Tableau Server と Tableau Onlineどっちを選ぶ?

    はじめに組織内で「ダッシュボードの共有」「データソースの自動更新」を…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

CAPTCHA


カテゴリ

最近の記事

  1. dbtCloud使ってみた
  2. ChainlitでのOAuth認証にスコープを追加する方法
  3. Snowflake無料トライアルの始め方
  4. TROCCO入門
  5. コンポーザブルCDPにおけるSnowflakeのマルチモーダ…
  1. Google Analytics

    Google Analytics4 を知る。
  2. Google BigQuery

    BigQueryのユーザー定義関数(UDF)をTableauで使う
  3. 海外カンファレンス

    Adobe Summit 2018 レポート(2):経験の創造者たち
  4. IT用語集

    ユーザビリティ(Usability)って何?
  5. IT用語集

    メソッド(Method)って何?
PAGE TOP