Tableau

Tableauのリレーションシップを理解して過剰結合を防ぐ

リレーションシップとは

Tableau Desktop 2020.2の新機能で、ザックリいうと「これまで1から結合を定義していたものを、Tableauが自動で調整してくれる」という機能です。
ユーザーにとって嬉しいポイントとしては「粒度の異なるデータをくっつけて分析できる」という点で、これにより中間テーブルを定義せずに済み、レコード増加によるパフォーマンスの悪影響を抑えることができます。
リレーションシップ自体は大変便利な機能で、一般的な「結合」の上位互換となるのですが、データ量が膨大になる時には注意しなければなりません。
合言葉は「カーディナリティ(濃度)」です。

カーディナリティ「1対多」「多対多」の使い分け

リレーションシップで「パフォーマンスオプション」を開くと、カーディナリティの項目が現れます。
※デフォルトでは「多対多」で設定されています。

この「多対多」はデータの粒度を細かく扱うことを表しています。
実際にTableau Desktopでの挙動から、カーディナリティが何を指すのか見ていきましょう。
まず、「注文」と「売上目標」という2つのテーブルを[オーダー日]でリレーションを組んでいきます。

オーダー日やカテゴリなどを適当に配置すると、以下のようになります。
各日付ごとの詳細なデータが格納されていることが確認できました。

次に、リレーションを「多対一」にしてみます。

すると、先ほどの表は以下のようになります。

今回は[オーダー日]でリレーションを組んだので、オーダー日の単位でデータが丸められました。
このようにカーディナリティを調整することにより、データの粒度を変更することができるのです。
これはデータ量が多い時にかなりパフォーマンスに“差”が出ます。
また、場合によっては「キーが不十分でデータを過剰に結合してしまう」ということも生じます。
Tableauのリレーションシップは大変便利な機能で、ほとんどのユーザーはこれを気にしなくても良いです(多分
しかし、システムの中核をデザインする立場であれば、このように細部までこだわっていきたいところです。
Tableauや総合研究所に関する質問はお問い合わせからどうぞ。

ピックアップ記事

  1. 最速で理解したい人のためのIT用語集

関連記事

  1. Tableau

    Tableau:分かりやすいLOD – INCLUDE編

    エクスチュア渡部です。今回はLODブログの第3弾です。INCLUD…

  2. Google BigQuery

    Tableau×BigQueryをコスパ良く使う方法

    こんにちは、エクスチュア渡部です。TableauでBigQue…

  3. Tableau

    Tableau Bridgeをザックリ理解する

    Tableau Bridge(タブローブリッジ)とはTableau …

  4. Tableau

    Tableauで半円型のゲージを作る方法

    こんにちは。エクスチュアの田中寛人です。今回はTableauで半円型の…

  5. Tableau

    Tableau×Teams連携

    みなさんこんにちは、エクスチュアの大吉です。2024…

  6. Tableau

    Tableau Tips〜Onlineで利用可能なフォント〜

    はじめにTableau Server/Onlineで利用可能なフォン…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

CAPTCHA


最近の記事

  1. SnowPro Advanced: Architect 合格…
  2. LangChainのソースコードから実装を見てみる(Chat…
  3. Tableau×Teams連携
  4. AIを使ったマーケティングゲームを作ってみた
  5. Snowflakeや最新データ基盤が広義のマーケティングにも…
  1. Adobe Analytics

    ページでの滞在時間とは-Adobe Analyticsの指標説明
  2. IT用語集

    エンタープライズサーチ(Enterprise Search)って何?
  3. Sansan

    Sansan:メール署名取り込み機能を設定してみた
  4. Adobe Analytics

    Adobe新タグ登場って本当?AEP Web SDKって何だ?
  5. ヒートマップ

    ユーザビリティの検証で気を付けたいこと、やってはいけないこと③
PAGE TOP