Databricks

Databricks: Spark DataFrameでピボットグラフを作る

こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。

今回はDatabricksにおける、Spark DataFrameのピボット機能を使った集計方法についてです。

DataFrameを作成する

まずはサンプルデータでDataFrameを作成します。
公開データのPopular Baby NamesのCSVを使います。
このデータは、「ニューヨーク市で生まれた新生児の名前」を出生年別・人種別・性別でまとめたパブリックデータです。

Databricksにデータをアップロードしてから、下記のコードでDataFrameを作成します。

import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._

val myschema = StructType(
  Array(
    StructField("Year of Birth", IntegerType, true),
    StructField("Gender", StringType, true),
    StructField("Ethnicity", StringType, true),
    StructField("Child's First Name", StringType, true),
    StructField("Count", IntegerType, true),
    StructField("Rank", IntegerType, true)
  )
)

val babyname = spark.read.option("header", true)
.schema(myschema)
.csv("/FileStore/tables/Popular_Baby_Names.csv")

dispaly(babyname)

DataFrameの中身が表示されました。

Popular Baby NamesのCSVをロード

このデータを使って、
2013年〜2016年に生まれた「男の子」の名前でピボットを作ります。

pivotメソッドでピボットテーブル化

ピボットテーブルを作るにはその名もズバリpivotメソッドを使います。
groupByのあとに、さらに軸にしたいカラムをpivotで指定します。

val result = babyname.filter('Gender === "MALE")
.filter($"Year of Birth" > 2012)
.groupBy("Child's First Name")
.pivot("Year of Birth")
.sum("Count")

display(result.orderBy($"2016".desc).limit(10))

2016年の出生数を降順でソートしてトップ10だけを表示してます。

pivotメソッドを使う

ピボットグラフを作成する

最後にテーブルをグラフ化します。
グラフボタンを押して「Bar」を選んだ後、「Plot Option」を開いて下記のように設定します。

Keys: Child’s First Name
Value: 2013, 2014, 2015, 2016
Display type: Stacked Bar chart

積み上げ棒グラフの設定

Applyをクリックすると、グラフが描画されて完成です。

ピボットグラフの完成

Databricksを使えば、ETLから可視化までをScala/Pythonで一貫して作業出来るのでメソッドさえ覚えてしまえばとてもスムーズな分析が可能です。

弊社はデジタルマーケティングからビッグデータ分析まで幅広くこなすデータ分析のプロ集団です。
Databricksのコンサルティング/導入支援についてのお問合わせはこちらからどうぞ。

ブログへの記事リクエストはこちらまでどうぞ。

関連記事

  1. Google Analytics

    Google Analytics: ユニバーサルアナリティクスの拡張Eコマース用dataLayerを…

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

  2. Adobe Analytics

    AdobeAnalytics: s.Util.getQueryParam で複数パラメータ同時取得

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

  3. Databricks

    Databricks: Spark RDDで使う主なメソッド

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

  4. Adobe Analytics

    Adobe AEP SDKをTypeScriptで開発したReactNativeアプリに実装する

    こんにちは、エクスチュアの権泳東(權泳東/コン・ヨンドン)です。…

  5. Databricks

    Databricks: Delta Lakeを使ってみる

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

  6. Adobe Analytics

    Adobe Analytics: SegmentsAPIを使って大量のセグメント設定を作成・更新する…

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

最近の記事

  1. System Managerを利用したVPC内Redshif…
  2. Amazon Redshift ビルド168まとめ
  3. Tableauのテスト自動化を実現する Wiiisdom O…
  4. Databricksが買収した8080Labのbambool…
  5. databricksのnotebookを使ってみよう その2…
  1. Tableau

    【TC19ブログ】Tableau新データモデリング(リレーションシップ)解説
  2. Google BigQuery

    OWOX BI: GoogleSheetsアドオンでBigQueryをお手軽ビジ…
  3. 海外情報

    【TC19ブログ】Tableau Conference 2019 3日目レポート…
  4. Tableau

    Tableau:KPI達成状況を把握出来るグラフを作る
  5. ObservePoint

    ObservePoint:強力でアツい機能を持つサイト監査ツールの紹介
PAGE TOP