Databricks

Databricks: Spark DataFrameでピボットグラフを作る

こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。

今回はDatabricksにおける、Spark DataFrameのピボット機能を使った集計方法についてです。

DataFrameを作成する

まずはサンプルデータでDataFrameを作成します。
公開データのPopular Baby NamesのCSVを使います。
このデータは、「ニューヨーク市で生まれた新生児の名前」を出生年別・人種別・性別でまとめたパブリックデータです。

Databricksにデータをアップロードしてから、下記のコードでDataFrameを作成します。

import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._

val myschema = StructType(
  Array(
    StructField("Year of Birth", IntegerType, true),
    StructField("Gender", StringType, true),
    StructField("Ethnicity", StringType, true),
    StructField("Child's First Name", StringType, true),
    StructField("Count", IntegerType, true),
    StructField("Rank", IntegerType, true)
  )
)

val babyname = spark.read.option("header", true)
.schema(myschema)
.csv("/FileStore/tables/Popular_Baby_Names.csv")

dispaly(babyname)

DataFrameの中身が表示されました。

Popular Baby NamesのCSVをロード

このデータを使って、
2013年〜2016年に生まれた「男の子」の名前でピボットを作ります。

pivotメソッドでピボットテーブル化

ピボットテーブルを作るにはその名もズバリpivotメソッドを使います。
groupByのあとに、さらに軸にしたいカラムをpivotで指定します。

val result = babyname.filter('Gender === "MALE")
.filter($"Year of Birth" > 2012)
.groupBy("Child's First Name")
.pivot("Year of Birth")
.sum("Count")

display(result.orderBy($"2016".desc).limit(10))

2016年の出生数を降順でソートしてトップ10だけを表示してます。

pivotメソッドを使う

ピボットグラフを作成する

最後にテーブルをグラフ化します。
グラフボタンを押して「Bar」を選んだ後、「Plot Option」を開いて下記のように設定します。

Keys: Child’s First Name
Value: 2013, 2014, 2015, 2016
Display type: Stacked Bar chart

積み上げ棒グラフの設定

Applyをクリックすると、グラフが描画されて完成です。

ピボットグラフの完成

Databricksを使えば、ETLから可視化までをScala/Pythonで一貫して作業出来るのでメソッドさえ覚えてしまえばとてもスムーズな分析が可能です。

弊社はデジタルマーケティングからビッグデータ分析まで幅広くこなすデータ分析のプロ集団です。
Databricksのコンサルティング/導入支援についてのお問合わせはこちらからどうぞ。

ブログへの記事リクエストはこちらまでどうぞ。

関連記事

  1. Adobe Analytics

    Adobe Mobile SDK 4.xからAEP SDKに移行する

    こんにちは、エクスチュアの権泳東(コン・ヨンドン)です。Ado…

  2. Adobe Analytics

    AdobeAnalytics: GTMのdataLayerをAdobeAnalyticsの処理ルール…

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

  3. プログラミング

    Node.jsでCSVファイル内のダブルクオートで囲まれたカラム内のカンマを除去する

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

  4. Adobe Analytics

    Adobe AEP SDKをTypeScriptで開発したReactNativeアプリに実装する

    こんにちは、エクスチュアの権泳東(權泳東/コン・ヨンドン)です。…

  5. Adobe Analytics

    AdobeAnalytics: s.Util.getQueryParam で複数パラメータ同時取得

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

  6. Adobe Analytics

    Adobe Analytics: SegmentsAPIを使って大量のセグメント設定を作成・更新する…

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

最近の記事

  1. databricksのnotebookを使ってみよう その1…
  2. databricks:GCPで利用を開始する
  3. KARTE「オフラインデータをオンライン接客に活用する」
  4. ELB (ALB・NLB・CLB) をサクッと学ぶ
  5. Direct Connect vs Site to Site…
  1. Adobe Target

    Adobe Target: スマホアプリ上でABテストをする
  2. Amazon Web Services

    セキュリティグループ vs ネットワークACL
  3. Adobe Analytics

    Adobe AnalyticsとGoogle Analyticsの違い① セグメ…
  4. Adobe Analytics

    Adobe Analytics:計算指標でevents変数を後付けでパーティシペ…
  5. GA 360 Suite

    BigQuery: Google Analytics 360のネストされたデータ…
PAGE TOP