Databricks

Databricks: Spark DataFrameでピボットグラフを作る

こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。

今回はDatabricksにおける、Spark DataFrameのピボット機能を使った集計方法についてです。

DataFrameを作成する

まずはサンプルデータでDataFrameを作成します。
公開データのPopular Baby NamesのCSVを使います。
このデータは、「ニューヨーク市で生まれた新生児の名前」を出生年別・人種別・性別でまとめたパブリックデータです。

Databricksにデータをアップロードしてから、下記のコードでDataFrameを作成します。

import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._

val myschema = StructType(
  Array(
    StructField("Year of Birth", IntegerType, true),
    StructField("Gender", StringType, true),
    StructField("Ethnicity", StringType, true),
    StructField("Child's First Name", StringType, true),
    StructField("Count", IntegerType, true),
    StructField("Rank", IntegerType, true)
  )
)

val babyname = spark.read.option("header", true)
.schema(myschema)
.csv("/FileStore/tables/Popular_Baby_Names.csv")

dispaly(babyname)

DataFrameの中身が表示されました。

Popular Baby NamesのCSVをロード

このデータを使って、
2013年〜2016年に生まれた「男の子」の名前でピボットを作ります。

pivotメソッドでピボットテーブル化

ピボットテーブルを作るにはその名もズバリpivotメソッドを使います。
groupByのあとに、さらに軸にしたいカラムをpivotで指定します。

val result = babyname.filter('Gender === "MALE")
.filter($"Year of Birth" > 2012)
.groupBy("Child's First Name")
.pivot("Year of Birth")
.sum("Count")

display(result.orderBy($"2016".desc).limit(10))

2016年の出生数を降順でソートしてトップ10だけを表示してます。

pivotメソッドを使う

ピボットグラフを作成する

最後にテーブルをグラフ化します。
グラフボタンを押して「Bar」を選んだ後、「Plot Option」を開いて下記のように設定します。

Keys: Child’s First Name
Value: 2013, 2014, 2015, 2016
Display type: Stacked Bar chart

積み上げ棒グラフの設定

Applyをクリックすると、グラフが描画されて完成です。

ピボットグラフの完成

Databricksを使えば、ETLから可視化までをScala/Pythonで一貫して作業出来るのでメソッドさえ覚えてしまえばとてもスムーズな分析が可能です。

弊社はデジタルマーケティングからビッグデータ分析まで幅広くこなすデータ分析のプロ集団です。
Databricksのコンサルティング/導入支援についてのお問合わせはこちらからどうぞ。

ブログへの記事リクエストはこちらまでどうぞ。

関連記事

  1. Adobe Analytics

    Adobe Mobile SDK 4.xからAEP SDKに移行する

    こんにちは、エクスチュアの権泳東(コン・ヨンドン)です。Ado…

  2. Google BigQuery

    Google Apps Scriptを使ってスプレッドシートからBigQueryのテーブルを更新する…

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

  3. Adobe Analytics

    Adobe AEP SDK: リバースプロキシを使ったアプリ計測検証方法

    こんにちは、エクスチュアの權泳東(コン・ヨンドン)です。Ado…

  4. Adobe Analytics

    Adobe Analyticsに入り切らないデータをBigQueryに投入する

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

  5. Adobe Analytics

    AA + GA : SafariのITP2.1に備えてphpでクッキーを永続化する

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

  6. Amazon Web Services

    Databricks Community Editionを使ってApache Sparkを無料で学ぶ…

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

最近の記事

  1. KARTE – 「コンテキストイベント」を活用し…
  2. KARTE:最低限!KARTEの運用管理のためにやっておくこ…
  3. YOTTAA:新機能「Anomaly AI」のご紹介
  4. Tableau 2021.1 新機能紹介
  5. YOTTAA:ECサイトで見るべき8つのサイトパフォーマンス…
  1. Adobe Analytics

    Adobe Analytics: DatafeedをGoogle BigQuer…
  2. Mouseflow

    Mouseflow:検索の仕様
  3. Google BigQuery

    GCP: 今月のGCP課金額をslackに自動的に書き込む
  4. ObservePoint

    ObservePoint:強力でアツい機能を持つサイト監査ツールの紹介
  5. Adobe Analytics

    GTMのdataLayerをAdobeAnalyticsの「s」オブジェクトにコ…
PAGE TOP