Adobe Analytics

Adobe Analytics: データフィードをBigQueryで集計する

こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。

前回のブログで、AdobeのデータフィードファイルをBigQueryにロードするところまで書きました。
今回は、データフィードをロードしたテーブルに対してSQLクエリを実行して、データを集計してみます。

2019/02/12 備考
この記事のSQLはレガシーSQLを使っています。StandardSQLの例はこちらの記事で紹介してます。

訪問者別ページビュー数

まずは訪問者別のページビュー数の抽出です。

/* 訪問者別pv */
SELECT date(date_time) as date,
concat(string(post_visid_high),  '-', string(post_visid_low)) as visid, 
COUNT(*) as pv_by_visid
FROM [test:my_adobe_datafeed.online_users]
WHERE hit_source = 1
AND exclude_hit = 0
AND date(date_time) = '2017-05-17' 
GROUP BY date, visid;

クエリ結果はこうなります。

日付、訪問者ID、そして訪問者ID別のページビュー数が抽出されました。
BigQueryではtimestampがUTCで格納されるのですが、そもそもDatafeedファイルのdate_time列は、日本時間JSTでエクスポートしてるので、時差9時間は足してません。

訪問者の特定については、Adobeのヘルプに書いてある通り、post_visid_highとpost_visid_lowを繋げたものに対して、exclude_hitが0、かつhit_sourceが1だけの行に絞ってあります。

Identifying Visitors – ClickStream Data Feeds

訪問回数別ページビュー数

各訪問者の訪問回数別にページビュー数を抽出します。

/* 訪問回数別pv */
SELECT date(date_time) as date,
concat(string(post_visid_high), "-", string(post_visid_low), "-", string(visit_num)) as unq_visits,
count(*) as pv_by_unq_visits
FROM [test:my_adobe_datafeed.online_users]
WHERE hit_source = 1
AND exclude_hit = 0
AND date(date_time) = '2017-05-17'
GROUP BY date, unq_visits;

クエリ結果はこうなります。

訪問者IDの末尾に訪問回数(visit_num)を追加することで、セッションを特定するIDになります。
各訪問者の訪問セッションごとのページビュー数が抽出されました。

パスフロー

訪問レベルの遷移レポートであるパスフローを抽出してみます。
GROUP_CONCAT関数を使います。

/* パスフロー(フルパス) */
SELECT date(date_time) as date,
concat(string(post_visid_high), '-', string(post_visid_low), '-', string(visit_num)) AS unq_visit,
GROUP_CONCAT(post_pagename,  ' -> ') AS visit_level_path
FROM [test:my_adobe_datafeed.online_users]
WHERE hit_source = 1 
AND exclude_hit = 0
AND date(date_time) = '2017-05-17'
GROUP BY date, unq_visit;

クエリ結果はこうなります。

GROUP_CONCAT関数を使って、セパレータを「->」にして訪問セッション別に表示したページ名を繋げました。
訪問者レベルのパスフローを抽出したい場合は、visit_numを使わなければOKです。

なお、リロードした場合に同じページ名が入ってしまってます。
リロードページ名を重複表示しないようにするためには、クエリをもう少し考える必要がありますね。

今回はBigQueryを使ってデータフィードに対してSQLクエリを実行して集計を行う方法について説明しました。

次回は、Google DataStudioからBigQueryに接続して、データを可視化する方法について書いて見たいと思います。

続き: Adobe Analytics: BigQueryにロードしたデータフィードをDataStudioで可視化する

ブログへの記事リクエストはこちらまで

ピックアップ記事

  1. 最速で理解したい人のためのIT用語集

関連記事

  1. Adobe Analytics

    ページの深さとは-Adobe Analyticsの指標説明

    今回はページの深さの指標について説明します。ページの深さとはそのペ…

  2. Adobe Analytics

    【実験してみた】CNAMEを使わずにAdobeAnalyticsを1stパーティクッキーで計測する

    こんにちは、エクスチュアの権泳東(權泳東/コン・ヨンドン)です。…

  3. Adobe Analytics

    訪問回数 とは-Adobe Analyticsの指標説明

    これから、この場をお借りして私が学んだことを書いていきます。よろしく…

  4. Adobe Analytics

    Adobe Analytics: AppMeasurement.jsの実装開発作業に使うツール Ja…

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

  5. Firebase Analytics

    Firebase Analyticsの新しいBigQueryスキーマを試す

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

  6. Adobe Analytics

    Adobe Analytics:自動で分析してくれる貢献度分析(異常値検出)機能

    こんにちは、CEOの原田です。今回は随分前から公開されてるのに…

最近の記事

  1. LangChainって何?: 次世代AIアプリケーション構築…
  2. 回帰分析はかく語りき Part1 単回帰分析
  3. GitHub ActionsでGCEへのデプロイを楽にしてみ…
  4. Snowflake の Copilot が優秀すぎる件につい…
  5. Snowflake の新しいData Clean Roomの…
  1. Adobe Analytics

    ページでの滞在時間とは-Adobe Analyticsの指標説明
  2. Google Tag Manager

    GTMで複数のコンテナに同じ実装をしたい
  3. Web解析

    コラム:Web解析から顧客体験分析(CXA)に
  4. Adobe Analytics

    Adobe Summit 2020レポート: Customer Journey …
  5. ブログ

    ダッシュボードとは
PAGE TOP