Tableau

【TC19ブログ】セッション紹介:DataRobot×TableauでAIを民主化する

こんにちは。エクスチュアインターン生の酒井です。

11/12(火)~11/15(金)にラスベガス開催された「Tableau Conference2019(TC19)」ですが、主に以下の要素で構成されています。

・今後のTableauのビジョンや目標をCEOから発表する「Keynote」(詳しくはこちら)

・これからのTableauの機能的なアップデートをエンジニアチームから発表する「Devs on stage」(詳しくはこちら)

・予選を勝ち抜いてきた3人がVizを20分以内で作成し、コンテスト形式で優勝を決める「Iron Viz」

・様々なテーマでTableauに纏わる話をスピーカーがそれぞれ話す「セッション」

今回はその中で、一つ興味深いセッションがあったのでそれをご紹介します。

●セッションのレベルとテーマ

セッションの分類としては、

レベルは「Everyone」「Beginner」「Intermediate」「Advanced」「Jedi」の5つ

テーマは「Data Culture」「Dashboard Design」「Data and Analytics Skills」「Data Management」「Embedded Analytics」「Smart Analytics」「Tableau at Scale」「Tableau Community」の8つ

となっており、各自聞きたいセッションを事前予約して当日赴くスタイルです。合計で214のセッションが行われているので、ネタに欠かすことはありません。

●DataRobotのプラットフォーム

本記事で紹介するのはDataRobotによるセッション「Democratizing Enterprise AI with DataRobot and Tableau」です。

「DataRobotとTableauを組み合わせてどのようにAIを組織の中で民主化していくか」、というテーマのセッションになります。

DataRobotは「エンタープライズ機械学習プラットフォーム」を掲げるサービスです。

そもそも最近流行りの機械学習、AIの違いはどこになるのでしょうか。DataRobotは次のように定義します。

・機械学習(ML):特定のデータを学習させて、ある特定のタスクや明確に定義づけされた問いに対して、予測を行うこと

・AI:ビジネスの現場で実際にアクションを取るためにデータによる予測に、ビジネスロジックを組み合わせること

です。

簡潔に言うと、「過去のデータから未来を予測するのが機械学習」「人間と同じく過去の経験から行動を出来るようにするのがAI」となります。

ビジネスの世界では、機械学習モデルを作成して終わりではありません。むしろそのモデルや結果を元にアクションを取っていく必要があります。

それを実現するのがDataRobotのソリューションです。

データで機械学習を行い、実際にビジネスで結果を出していくのには

・データから機械学習モデルやAIを作成していく「AI Creators」

・AIの効果測定などビジネスで役割を発揮するか確認する「AI Operators」

・予測結果を元に実際のビジネスアクションを取っていく「AI Consumers」

の3種類のロールが組織内には存在します。それを一つのプラットフォームで自動で行うのがDataRobotです。

●DataRobot×Tableauで実際に何が出来るのか?

そんなDataRobotですが、Tableauのプラットフォームに近い考え方をしています。

Tableauのライセンス体系はデータの活用度に応じた体系で3つに分かれていますがソックリですね。

そしてDataRobot + Tableauで出来ることは「AIによる予測結果やモデルの内容を、組織の中でダッシュボードとして共有できること」です。

AIや機械学習といった領域を一部の人しか理解できないようにブラックボックス化するのではなく、透明性を高めていこう、としているわけです。

段階としては、

①データを読み込み、インサイトの探索やモデルの作成

②モデルの精度向上

③テストデータに予測をあてはめ、実際に予測結果を出力

④予測データを可視化し、人に分かりやすくビジネスで活かしやすいダッシュボードにする

となります。

印象的であったのが、

①のモデル作成はDataRobot上のUIでデータのドラック&ドロップで可能で、目的変数とする項目の選択も簡単

②DataRobotではモデルの性能を一覧でみて、モデルを選択することが出来るパラレル処理を実装


という点です。もちろん他にも細かい機能はあると思いますが非常にシンプルです。

そして最後にTableauでモデルの可視化をしていきますがセッションでは以下のダッシュボードがサンプルとして出されていました。

出展元:https://public.tableau.com/profile/emily.webber7543#!/vizhome/LendingTableau/LendingClub

Tableauは「複雑なデータを簡単に誰でも分かるように可視化する」ソリューションです。

例えば、モデルによる予測結果を可視化するだけではなくパラメーターの内訳をダッシュボード上のツールヒントに記載をしてあげる、というのも有効な使い方かもしれません。

以上がセッションのサマリになりますが、YouTubeに本セッションの内容がそのままレコーディングされてアップロードされています。もしご興味ある方いましたらこちらから見てみてください。

(もちろん他のセッションもアップロードされています)

「大量のデータから機械学習をモデルを簡単に作成し、裏側のロジックも見れるようにするDataRobot」と「複雑なデータを誰でも分かるように見える化しデータをビジネスに還元するTableau」という両者とも「民主化」を目指す組み合わせの未来を感じた、セッションのご紹介でした。

 

●エクスチュアで働く仲間募集!

エクスチュアでは一緒に働く仲間を大募集しています!
募集対象の職種は、弊社サイトをご確認ください。

この記事を読んで、「話だけでも聞いてみようかな〜」という興味を持って頂いた方、
是非お問い合わせフォームよりご連絡ください。

 

ピックアップ記事

  1. 最速で理解したい人のためのIT用語集

関連記事

  1. Tableau

    Tableauとは

    こんにちは!インターン生の市川です。少し前にTableauというソフ…

  2. Tableau

    TableauでTreasure Data上のデータへ接続する方法(2019/10/02時点)

    ※こちらの記事は過去の手順です。新しい手順についてはこちらの記事を参…

  3. Tableau

    Tableau:KPI達成状況を把握出来るグラフを作る

    こんにちは。エクスチュア渡部です。今回はTableauで↑のように…

  4. Tableau

    Tableauの便利な機能

    こんにちは!インターン生の市川です。前回はTableauでの、ダッシ…

  5. Tableau

    Tableau 2021.1 新機能紹介

    Tableau 2021.1 新機能紹介今回の2021.1は前回ま…

  6. Tableau

    Tableauで小笠原諸島等を東京都から除外する方法

    こんにちは。エクスチュアの田中寛人です。今回はTableauの…

カテゴリ

最近の記事

  1. 進化学に倣う最適化手法「遺伝的アルゴリズム」
  2. dbt_expectationsでデータ品質を向上させよう
  3. BigQueryとSnowflakeのLLM関数を比較してみ…
  4. dbtCloud使ってみた
  5. ChainlitでのOAuth認証にスコープを追加する方法
  1. ObservePoint

    ObservePointの活用で自動車メーカー フォードが達成した4つの成果
  2. Adobe Analytics

    Adobe Analyticsを知る。
  3. Data Clean Room

    SnowflakeのData Clean Roomを基礎から一番詳しく解説(1回…
  4. IT用語集

    カスタマージャーニー(Customer Journey)って何?
  5. Adobe Analytics

    Looker: エンジニアがBIで分析ダッシュボードを作る
PAGE TOP