Adobe Analytics

Adobe Analytics: BigQueryにロードしたデータフィードをDataStudioで可視化する

こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。

前回のブログで、BigQueryにロードしたAdobeのデータフィードテーブルに対してSQLクエリを実行し、データを集計するところまで書きました。
今回は、Google DataStudioからBigQueryに接続し、Adobeのデータをグラフで表示してみます。

DataStudioからBigQueryに接続するためには、
1. BigQueryのテーブルまたはビューを作っておいて、それをデータソースとして読み込む方法と、
2. またはDataStudioからカスタムクエリを実行する方法
この2つの方法が存在します。

今回は、BigQueryでビューを作成しておいて、そのデータをDataStudioから接続して、グラフ表示してみます。

BigQuery上でビューを作成する

BigQueryで、ページ名に対してページビュー数x訪問回数x実訪問者数の指標を表示するためのクエリを作成します。

このようなクエリを書いて実行します。
※ページ名が長いので、SUBSTRで短くしてます。

SELECT SUBSTR(post_pagename, 0, 60) AS pagename,
COUNT(post_pagename) AS pageview,
EXACT_COUNT_DISTINCT(STRING(post_visid_high) + STRING(post_visid_low) + STRING(visit_num)) AS visits,
EXACT_COUNT_DISTINCT(STRING(post_visid_high) + STRING(post_visid_low)) AS visitors,
FROM [test:my_adobe_datafeed.online_users]
WHERE date(date_time) >= '2017-05-16'
AND  date(date_time) <= '2017-05-31'
AND hit_source = 1
AND exclude_hit = 0
GROUP BY pagename
ORDER BY pageview DESC;

結果はこうなりました。

この結果をビューとして保存するので、[Save View]ボタンをクリックして、名前をつけて保存します。

Data StudioからBigQueryに接続する

次はData StudioからBigQueryに接続します。

まずは[空白]テンプレートからレポートを作成します。
データソース選択のメニューが出て来たら、[新しいデータソースを作成]をクリックします。

コネクタ一覧の中のBigQueryから、プロジェクトとデータセットを開くと先ほど作ったpages_by_pv_visits_visitorsビューを選べるので、[接続]します。

pageview, visits, visitorsの3つの指標(タイプ:[数値] / 集計方法:[合計])と、pagenameというのディメンション(テキスト)がロードされるので、[レポートに追加]します。

真っ白でグリッド線だけが表示されてるレポート編集画面が出て来るので、「棒グラフ」を挿入します。

ディメンションにpagename、指標にpageview, visits, visitorsの3つを選び、並べ替えをpageviewで降順にします。

それから[スタイル]タブを開いて、見た目を微調整します。

・[横棒]にする
・[単色]のチェックを外す
・[データラベルを表示]にチェックを入れる

あとは、グラフのサイズをドラッグ&ドロップで微調整したら、こんな感じになります。
レポートの名前も、デフォルトの無題から、わかりやすい名前に変えておきます。

これで、Adobe Analytics -> Datafeedでエクスポート -> Google Compute Engine(SFTP)に転送 -> BigQueryにロード -> DataStudioでグラフ化 という道のりを経て可視化出来ました。

今回はDataStudioからBigQueryに接続して、データをグラフ化する方法について説明しました。
次回は、引き続きBigQueryにロードしたAdobeのデータを使って、機械学習によるページビュー予測分析について書いてみようと思います。

ブログへの記事リクエストはこちらまで

ピックアップ記事

  1. 最速で理解したい人のためのIT用語集

関連記事

  1. Adobe Analytics

    バウンスと直帰-Adobe Analytics

    こんにちは!インターン生の藤本です。今日はバウンスと直帰について説明…

  2. Adobe Analytics

    Adobe Analytics: Legacy s_code.jsからAppMeasurement.…

    こんにちは、エクスチュアの權泳東(権泳東/コン・ヨンドン)です。…

  3. Adobe Analytics

    Adobe AnalyticsとGoogle Analyticsの違い③ カスタム計測のされ方の違い…

    こんにちは。CEOの原田です。今回もAAとGAの違いを述べていきま…

  4. Adobe Analytics

    Adobe AEP SDKでReactNativeアプリを計測する (Android編)

    こんにちは、エクスチュアの権泳東(コン・ヨンドン)です。今回は…

  5. Adobe Analytics

    再来訪頻度とは-Adobe Analyticsの指標説明

    今回は再来訪頻度について説明いたします。再来訪頻度とはサイトを訪問…

  6. Adobe Analytics

    離脱リンクとは-Adobe Analyticsの指標説明

    今回は離脱リンクについて説明いたします。離脱リンクとはリンクにより…

最近の記事

  1. AIを使ったマーケティングゲームを作ってみた
  2. Snowflakeや最新データ基盤が広義のマーケティングにも…
  3. 回帰分析はかく語りき Part3 ロジスティック回帰
  4. GCSへのSnowflake Open Catalogによる…
  5. VPC Service Controlsで「NO_MATCH…
  1. IT用語集

    ハードウェア(Hardware)、ソフトウェア(Software)って何?
  2. Tableau

    Tableau : IF文の「集計」「非集計」の混在を解決
  3. ブログ

    マーケティングオートメーションの根幹:リードについて解説してみた!
  4. Adobe Experience Cloud

    Adobe Summit 2020レポート: Experience Cloud …
  5. Python

    【完全版】MacでSeleniumを環境構築から実行まで 〜Python&…
PAGE TOP