未分類

BigQueryで高額課金が発生しているクエリの呼び出し元を特定する

こんにちは

突然ですが、BigQueryで負の遺産を大量に抱えていたりしませんか?

自由に簡単に使い始めることができることで人気のBigQueryですが、長年使っていると、ふと

「あれ、なんでこんなに課金されてるんだ?」

と思ったりしないでしょうか

今回は、

  • BigQueryの課金が多いことはわかったけど、具体的にどれが要因かわからない
  • クエリはわかったけど、どこから呼ばれているのかわからない

そんな時にBigQueryで呼ばれているクエリと呼び出し元を特定する方法をまとめます

※BigQuery Analyticsの課金額が多いことを特定するまでは省略します

■実行されているクエリとスキャン量を出す

BigQueryでこちらのクエリを流します

SELECT query,
       user_email,
       ROUND(SUM(total_bytes_billed) / POWER(1024, 4), 3) AS billed_tera_bytes
FROM INFORMATION_SCHEMA.JOBS
WHERE TIMESTAMP_TRUNC(creation_time, MONTH) = TIMESTAMP_TRUNC(CURRENT_TIMESTAMP(), MONTH)
  AND cache_hit = FALSE
GROUP BY 1, 2
ORDER BY 3 DESC
LIMIT 10

INFORMATION_SCHEMA.JOBS を見ます

このクエリにより、実行クエリの内容、実行アカウント、サーチ量をサーチ量順(=課金量)順に確認することができます。

当月の実行を対象としていますが、期間を絞りたいときはcreation_timeで期間を絞り込んでください。

これで、課金額が高いクエリと呼び出しアカウントがわかります

■サービスアカウントで呼ばれているが、どこでサービスアカウントが使われているかわからない

クエリはわかりました
呼んでるアカウントもわかりました
アカウントは共通のサービスアカウントでした
このサービスアカウント、どこで使われているの?

ということで、呼び出し元を探ってみましょう

先ほどのクエリを少し修正します

SELECT query,
       user_email,
       ROUND(SUM(total_bytes_billed) / POWER(1024, 4), 3) AS billed_tera_bytes,
       ANY_VALUE(job_id) job_id
FROM `region-us`.INFORMATION_SCHEMA.JOBS
WHERE TIMESTAMP_TRUNC(creation_time, MONTH) = TIMESTAMP_TRUNC(CURRENT_TIMESTAMP(), MONTH)
  AND cache_hit = FALSE
GROUP BY 1, 2
ORDER BY 3 DESC
LIMIT 10

実行すると、job_idが出力されます

Cloud Loggingのログエクスプローラに、対象のjob_idを入力して検索します

期間はデフォルトで直近の1時間になっているので、適切に設定します

該当のクエリを実行したときの詳細ログを見ることができます

このログの

protoPayload.requestMetadata.callerIp

に、呼び出し元のIPアドレスが記載されています

呼び出し元のIPアドレスがわかれば、何とか呼び出し元を探し出すことができるでしょう

この探し方、覚えておくと役に立つでしょう

Tableauのヘックスタイルマップでヒートマップを地図上に粗く表現する前のページ

Qualtricsで顧客満足度アンケートを行なってみた次のページ

ピックアップ記事

  1. 最速で理解したい人のためのIT用語集

関連記事

  1. Google Tag Manager

    【GA4/GTM】dataLayerを活用しよう

    はじめにこんにちは、エクスチュアの岩川です。GA4の…

  2. Generative AI

    ChainlitでのOAuth認証にスコープを追加する方法

    こんにちは!ChainlitというPythonでチャットアプ…

  3. Cortex

    [Snowflake新機能]AI_AGGを試してみた

    この記事はSnowflake Summit 2025で発表されたAI…

  4. Data Clean Room

    PostgreSQLによるデータクリーンルームの可能性について

    こんにちは、喜田です。本投稿は PostgreSQL Adv…

  5. Data Clean Room

    SnowflakeのData Clean Roomを基礎から一番詳しく解説(2回目)

    こんにちは、喜田です。複雑なSnowflakeのデータクリー…

  6. データサイエンス

    回帰分析はかく語りき Part3 ロジスティック回帰

    こんにちは、小郷です。昨今は社会が複雑化したために、Yes…

カテゴリ
最近の記事
  1. dbt Fusion使ってみた
  2. Manusを使ってみたうえでManusに感想ブログを書かせて…
  3. SquadbaseとStreamlitでお手軽アプリ開発
  4. [Snowflake Summit 2025] Snowfl…
  5. [Snowflake新機能]AI_AGGを試してみた
  1. Mouseflow

    mouseflowのプライバシー設定はシンプルで直感的なVisual Priva…
  2. IT用語集

    アイデンティティ管理(Identity Management)って何?
  3. Google Cloud Platform

    GoogleNext 2019レポート:初日目
  4. Tableau

    【図解】Tableau Desktop 2020.3で「計算式」「予測機能」など…
  5. IT用語集

    SQL・クエリ(Query)って何?
PAGE TOP